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Nitration of racemicD,L-1,2,4-butanetriol1 affords the energetic
material D,L-1,2,4-butanetriol trinitrate2, which is less shock
sensitive, more thermally stable, and less volatile than nitroglycerin.1

However, the limited availability of 1,2,4-butanetriol has impeded
substitution of 1,2,4-butanetriol trinitrate for nitroglycerin. Catalytic
hydrogenation ofD,L-malic acid (Scheme 1) constitutes one
synthetic route toD,L-1,2,4-butanetriol. This account establishes
microbial synthesis as an alternative catalytic strategy. Enzymes
from three different microbes are recruited to create biosynthetic
pathways (Scheme 2) by whichD-1,2,4-butanetriol1aandL-1,2,4-
butanetriol1b are derived fromD-xylose4a and L-arabinose4b,
respectively.

Commercial synthesis2 of D,L-1,2,4-butanetriol employs NaBH4
reduction of esterifiedD,L-malic acid3.3 For every ton of 1,2,4-
butanetriol synthesized, multiple tons of byproduct borates are
generated.D,L-Malic acid can also be hydrogenated over various
catalysts (Cu-Cr, Cu-Al, Ru-Re) at 2900-5000 psi of H2 and
60-160°C reaction temperatures.4 Yields of 1,2,4-butanetriol range
from 60% to 80%. A variety of byproducts are also formed during
high-pressure hydrogenation.4 These byproducts are not generated
when esterified malic acid is reduced using NaBH4.3 D,L-Malic acid
is synthesized from then-butane component of liquefiable petroleum
gas via intermediacy of maleic anhydride.5

To examine product and byproduct yields in detail, Ru on C
was selected as the catalyst for reduction of malic acid due to its
commercial availability and use in lactic acid hydrogenations.6

Reduction ofD,L-malic acid was optimized relative to H2 pressure,
temperature, concentration, and the ratio of catalyst to substrate.
Hydrogenation at 5000 psi and 135°C of a 1 Maqueous solution
of malic acid using 1.3 mol % relative to substrate of 5 wt % Ru
on C afforded 1,2,4-butanetriol in 74% yield. Byproducts (Scheme
1) accounted for a total of 25% of the starting malic acid and
complicated purification ofD,L-1,2,4-butanetriol using distillation.

Melting points, a key consideration in energetic material
formulations, differ for a single enantiomer relative to a racemic
mixture. Microbial syntheses were therefore needed for both 1,2,4-
butanetriol enantiomers.7 To address this challenge, the opposing
C-4 stereogenic centers ofD-xylose andL-arabinose were exploited
(Scheme 2) as the basis for synthesis ofD-1,2,4-butanetriol1a and
L-1,2,4-butanetriol1b, respectively. BothD-xylose andL-arabinose
are abundantly available in heteroxylans derived from corn fiber
and sugar beet pulp.8 Mixing of microbe-synthesized enantiomers
1aand1b (Scheme 2) would provide the equivalent of the racemic
D,L-1,2,4-butanetriol currently used to manufactureD,L-1,2,4-
butanetriol trinitrate.

Microbial synthesis (Scheme 2) of 1,2,4-butanetriol enantiomers
began with the reported oxidation ofD-xylose using fermentor-
controlled cultures (1 L scale) ofPseudomonas fragiATCC4973.9

D-Xylose (100 g/L) was oxidized at 30°C to D-xylonic acid 5a

(77 g/L) in 70% yield.L-Arabinose was discovered to be similarly
oxidized in 54% overall yield to a mixture ofL-arabino-1,4-lactone
(40 g/L) and L-arabinonic acid5b (15 g/L). The lactone was
subsequently hydrolyzed toL-arabinonic acid.Escherichia coli
constructs were then employed for the conversion ofD-xylonic 5a
acid and L-arabinonic acid5b into the enantiomers of 1,2,4-
butanetriol.

Previously undocumented catabolism ofD-xylonic acid byE.
coli K-12 was discovered to coincide withD-xylonate dehydratase10

expression. Transport ofD-xylonic acid and its conversion into
3-deoxy-D-glycero-pentulosonic acid6a (Scheme 2) thus employed
enzymes native toE. coli. L-Arabinonic acid catabolism and
L-arabinonate dehydratase9b,11 activity needed for generation of
3-deoxy-L-glycero-pentulosonic acid6b (Scheme 2) were absent
in E. coli. This necessitated the isolation and heterologous expres-
sion of the encoding genes from aP. fragi genomic DNA library.
Three cosmids enabledE. coli K-12 to catabolizeL-arabinonic acid.
From a 5.0 kb region shared between these cosmids,aadh-encoded
L-arabinonate dehydratase and anaatp-encoded L-arabinonate
transport protein were identified.

Attention then turned to identification of a 2-ketoacid decar-
boxylase capable of catalyzing the conversions of pentulosonic acid
6a to D-3,4-dihydroxybutanal7aand pentulosonic acid6b to L-3,4-
dihydroxybutanal7b (Scheme 2). Only benzoylformate decarboxy-
lase expressed byPseudomonas putida12acatalyzed these reactions.
Other 2-ketoacid decarboxylases screened but found to lack the
requisite activity included indole 3-pyruvate decarboxylase ex-
pressed byErwinia herbicola12b and a variety of different pyruvate

Scheme 1 a

a Reaction conditions: 5000 psi H2, Ru on C, 135°C, H2O.

Scheme 2 a

a Enzymes (microbial source): (a)D-xylose dehydrogenase (P. fragi);
(a′) L-arabinose dehydrogenase (P. fragi); (b) D-xylonate dehydratase (E.
coli); (b′) L-arabinonate dehydratase (P. fragi); (c) benzoylformate decar-
boxylase (P. putida); (d) dehydrogenase (E. coli).
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decarboxylases expressed byZymomonas mobilis,12c Acetobacter
pasteurianus,12d Zymobacter palmae,12e andSaccharomyces cere-
Visiae.12f

Native dehydrogenase activity inE. coli was anticipated to be
adequate for the reduction of butanal7a to D-1,2,4-butanetriol1a
and butanal7b to L-1,2,4-butanetriol1b (Scheme 2). To test for
the needed dehydrogenase activity, intactE. coli DH5R/pWN5.238A
(Scheme 3) expressing benzoylformate decarboxylase was incubated
in medium containing racemicD,L-3-deoxy-glycero-pentulosonic
acid. Accumulation ofD,L-1,2,4-butanetriol indicated thatE. coli
expressed the required dehydrogenase activity under aerobic culture
conditions.

With the required enzyme activities identified,E. coli constructs
were assembled for the conversions ofD-xylonic acid 5a and
L-arabinonic acid5b synthesized byP. fragi from D-xylose4a and
L-arabinose4b (Scheme 2).D-1,2,4-Butanetriol-synthesizingE. coli
DH5R/pWN6.186A (Scheme 3) carried aP. putida mdlCplasmid
insert encoding benzoylformate decarboxylase while relying on
nativeD-xylonate transport along with nativeD-xylonate dehydratase
and dehydrogenase activities. The required heterologous expression
of only a single gene was a consequence ofE. coli catabolism of
D-xylonic acid. By contrast,L-1,2,4-butanetriol-synthesizingE. coli
BL21(DE3)/pWN6.222A (Scheme 3) carried theP. putida mdlC
plasmid insert encoding benzoylformate decaboxylase, aP. fragi
aadhplasmid insert encodingL-arabinonate dehydratase, and aP.
fragi aatp insert encoding anL-arabinonate transport protein.
Alcohol dehydrogenase activity was the only nativeE. coli enzyme
activity recruited forL-1,2,4-butanetriol synthesis.

Fermentor-controlled cultivation (1 L) ofE. coli DH5R/
pWN6.186A at ambient pressure and 33°C resulted in the
conversion ofD-xylonic acid (10 g/L) intoD-1,2,4-butanetriol (1.6
g/L) in 25% yield. Similar cultivation ofE. coli BL21(DE3)/
pWN6.222A led to the conversion ofL-arabinonic acid (10 g/L)
into L-1,2,4-butanetriol (2.4 g/L) in 35% yield. Stereochemical
assignments for microbe-synthesized products were based on the
conversion to Mosher esters and comparison with similarly deriva-
tizedD- andL-1,2,4-butanetriol obtained from commercial sources.13

E. coli DH5R/pWN6.186A synthesized ethylene glycol (0.093 g/L)

for a 3% yield of this byproduct, whileE. coli BL21(DE3)/
pWN6.222A synthesized ethylene glycol (0.087 g/L) in 2% yield.

A key feature of the microbial synthesis of 1,2,4-butanetriol is
the substitution of a straightforward enzymatic reduction of an
aldehyde for the problematic catalytic reduction of a carboxylic
acid. The high H2 pressures and elevated temperatures required for
hydrogenation of malic acid are thus avoided. Byproduct formation
resulting from cleavage of carbon-carbon bonds is also substan-
tially reduced. Further metabolic engineering is clearly required to
increase product yields and concentrations. Nonetheless, microbial
catalysis is an intriguing alternative to catalytic hydrogenation for
the large-scale synthesis of 1,2,4-butanetriol needed for replacement
of nitroglycerin with 1,2,4-butanetriol trinitrate. The significance
of such a substitution is considerable given that nitroglycerin has
been used in industrial and military energetic materials since the
original dynamite formulations developed by Nobel.14
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Scheme 3 a

a Plasmids (size): restriction enzyme maps. Sites are abbreviated as
follows: B ) BamHI, Bg ) BglII, E ) EcoRI, H ) HindIII, S ) ScaI.
Parentheses indicate that the designated enzyme site has been eliminated.
Lightface lines indicate vector DNA; boldface lines indicate insert DNA.
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